High-level Interfaces for the Mad (matlab Automatic Differentiation) Package

نویسندگان

  • Shaun A. Forth
  • Robert Ketzscher
چکیده

Presently, the MAD Automatic Differentiation package for matlab comprises an overloaded implementation of forward mode AD via the fmad class. A key design feature of the fmad class is a separation of the storage and manipulation of directional derivatives into a separate derivvec class. Within the derivvec class, directional derivatives are stored as matrices (2-D arrays) allowing for the use of either full or sparse matrix storage. All manipulation of directional derivatives is performed using high-level matrix operations thus assuring efficiency. In this paper: we briefly review implementation of the fmad class; we then present our implementation of high-level interfaces allowing users to utilise MAD in conjunction with stiff ODE solvers and numerical optimization routines; we then demonstrate the ease and utility of this approach via several examples; we conclude with a road-map for future developments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AMOR REPORT 2005/01 Source Transformation for MATLAB Automatic Differentiation

This report describes MSAD, a tool that applies source transformation automatic differentiation to MATLAB programs involving arbitrary vector-valued functions. The transformed programs compute both the results of the original program and the first derivatives. The current version of MSAD performs a complete source transformation for the forward mode of AD by specialising and inlining operations...

متن کامل

A sparse matrix approach to reverse mode automatic differentiation in Matlab

We review the extended Jacobian approach to automatic differentiation of a user-supplied function and highlight the Schur complement form’s forward and reverse variants. We detail a Matlab operator overloaded approach to construct the extended Jacobian that enables the function Jacobian to be computed using Matlab’s sparse matrix operations. Memory and runtime costs are reduced using a variant ...

متن کامل

Forward-Mode Automatic Differentiation in Julia

We present ForwardDiff, a Julia package for forward-mode automatic differentiation (AD) featuring performance competitive with low-level languages like C++. Unlike recently developed AD tools in other popular high-level languages such as Python and MATLAB, ForwardDiff takes advantage of just-in-time (JIT) compilation to transparently recompile AD-unaware user code, enabling efficient support fo...

متن کامل

INTLAB implementation of an interval global optimization algorithm

We describe a new implementation of an interval optimization algorithm with focus on the software related issues. The algorithm implemented in MATLAB that uses the INTLAB package supporting interval calculations and automatic differentiation solves the bound constrained global optimization problem. The method itself is a simplified version of those interval techniques much investigated in the p...

متن کامل

Source Transformation for MATLAB Automatic Differentiation

We present MSAD, a source transformation implementation of forward mode automatic differentiation for MATLAB. MSAD specialises and inlines operations from the fmad and derivvec classes of the MAD package. The operator overloading overheads inherent in MAD are eliminated while preserving the derivvec class’s optimised derivative combination operations. Compared to MAD, results from several test ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004